Contents

Preface	page ix
Chapter I Structural organization of th	e nervous system 1
1.1 Nervous systems	1
1.2 The anatomy of a neuron	2
1.3 Non-myelinated nerve fibres	2
1.4 Myelinated nerve fibres	4
Chapter 2 Resting and action potentials	s 9
2.1 Electrophysiological recording methods	S 9
2.2 Intracellular recording of the membran	ne potential 11
2.3 Extracellular recording of the nervous	impulse 13
2.4 Excitation	16
Chapter 3 The ionic permeability of the	e nerve membrane 21
3.1 Structure of the cell membrane	21
3.2 Distribution of ions in nerve and muscl	e 24
3.3 The genesis of the resting potential	25
3.4 The Donnan equilibrium system in mus	scle 27
3.5 The active transport of ions	28
Chapter 4 Membrane permeability chare excitation	nges during
4.1 The impedance change during the spik4.2 The sodium hypothesis	e 34
4.3 Voltage-clamp experiments	39
4.4 Patch-clamp studies	47
Chapter 5 Voltage-gated ion channels	49
5.1 cDNA sequencing studies	49
5.2 The primary structure of voltage-gated	ion channels 49
5.3 The sodium gating current	53
5.4 The screw-helical mechanism of voltage	e-gating 55
5.5 The ionic selectivity of voltage-gated ch	annels 59
Chapter 6 Cable theory and saltatory of	conduction 63
6.1 The spread of potential changes in a ca	ble system 63
6.2 Saltatory conduction in myelinated ner	
6.3 Factors affecting conduction velocity	70
6.4 Factors affecting the threshold for excit	ration 71
6.5 After-potentials	72

Chap	oter 7	Neuromuscular transmission	74
7.1	The ne	uromuscular junction	74
7.2	Chemi	cal transmission	75
7.3	Post-sy	naptic responses	76
7.4	Pre-syr	naptic events	84
Chap	oter 8	Synaptic transmission in the nervous system	87
8.1	Synapt	ic excitation in motoneurons	87
8.2	Inhibit	ion in motoneurons	90
8.3	Interac	ction of IPSPs with EPSPs	91
8.4	Pre-syr	naptic inhibition	92
8.5	Slow s	ynaptic potentials	92
8.6	G-prot	ein-linked receptors	94
8.7	Electro	otonic synapses	97
Chap	oter 9	The mechanism of contraction in skeletal muscle	99
9.1	Anator		99
9.2	The sta	ructure of the myofibril	100
9.3		ding-filament theory	103
9.4	The m	olecular basis of contraction	106
Chap	oter I	The activation of skeletal muscle	112
10.1	Ion cha	annels in the membrane of skeletal muscle	112
10.2	Action	potential generation in surface and tubular	
	memb	ranes of skeletal muscle	113
10.3	Excitat	ion-contraction coupling in skeletal muscle	115
10.4	Involve	ement of Ca ²⁺ ions in excitation-contraction	
	coupli	ng	116
10.5	Interna	al membrane systems	118
10.6	Trigger	ring molecules for the release of sarcoplasmic	
	reticul	ar calcium	119
10.7	Tubula	r voltage detection mechanisms triggering	
	excitat	ion-contraction coupling	121
10.8	Calciu	n release from the sarcoplasmic reticulum	
		h the ryanodine receptor	124
10.9	_	ring of ryanodine receptor opening through	
		irational coupling to the dihydropyridine receptor	125
10.10	_	ation of sarcoplasmic reticular calcium following	
		rization	126
10.11	-	ew of excitation-contraction coupling in skeletal	
	muscle		128
Char	oter I I	Contractile function in skeletal muscle	129
11.1		ric and isotonic contractions	129
		ric twitch and tetanus	122

11.3	Isotonic contractions	132
11.4	Energetics of contraction	135
11.5	Work and power	135
11.6	Heat production	137
11.7	Efficiency	137
11.8	The energy source	138
11.9	Muscular fatigue	140
11.10	Energy balances during muscular exercise	141
11.11	Ionic and osmotic balances during muscular exercise	142
11.12	The effects of training	144
Cha	pter 12 Cardiac muscle	146
12.1	Structure and organization of cardiac cells	146
12.2	The electrical initiation of the heartbeat	146
12.3	The cardiac action potential	148
12.4	Ionic currents in cardiac muscle	149
12.5	The electrocardiogram	152
12.6	Cardiac excitation-contraction coupling	154
12.7	Nervous control of the heart	157
12.8	Cardiac arrhythmogenesis	158
Cha	pter 13 Smooth muscle	162
13.1	Structure	162
13.2	Excitation	163
13.3	Excitation-contraction coupling	164
13.4	Contractile mechanism	165
13.5	Mechanical properties	167
Furth	er reading	169
Refere	8	170
Index		178